内容字号:默认大号超大号

段落设置:段首缩进取消段首缩进

字体设置:切换到微软雅黑切换到宋体

Python工匠:使用数字与字符串的技巧

2018-11-02 17:53 出处:清屏网 人气: 评论(0

『Python 工匠』是什么?

我一直觉得编程某种意义上是一门『手艺』,因为优雅而高效的代码,就如同完美的手工艺品一样让人赏心悦目。

在雕琢代码的过程中,有大工程:比如应该用什么架构、哪种设计模式。也有更多的小细节,比如何时使用异常(Exceptions)、或怎么给变量起名。那些真正优秀的代码,正是由无数优秀的细节造就的。

序言

数字是几乎所有编程语言里最基本的数据类型,它是我们通过代码连接现实世界的基础。在 Python 里有三种数值类型:整型(int)、浮点型(float)和复数(complex)。绝大多数情况下,我们只需要和前两种打交道。

整型在 Python 中比较让人省心,因为它不区分有无符号并且永不溢出。但浮点型仍和绝大多数其他编程语言一样,依然有着精度问题,经常让很多刚进入编程世界大门的新人们感到困惑: "Why Are Floating Point Numbers Inaccurate?"

相比数字,Python 里的字符串要复杂的多。要掌握它,你得先弄清楚 bytes 和 str 的区别。如果更不巧,你还是位 Python2 用户的话,光 unicode 和字符编码问题就够你喝上好几壶了 (赶快迁移到 Python3 吧,就在今天!)

不过,上面提到的这些都不是这篇文章的主题,如果感兴趣,你可以在网上找到成堆的相关资料。在这篇文章里,我们将讨论一些 更细微、更不常见 的编程实践。来帮助你写出更好的 Python 代码。

最佳实践

1. 少写数字字面量

“数字字面量(integer literal)” 是指那些直接出现在代码里的数字。它们分布在代码里的各个角落,比如代码 del users[0] 里的 0 就是一个数字字面量。它们简单、实用,每个人每天都在写。 但是,当你的代码里不断重复出现一些特定字面量时,你的“代码质量告警灯”就应该亮起黄灯 :traffic_light: 了。

举个例子,假如你刚加入一家心仪已久的新公司,同事转交给你的项目里有这么一个函数:

def mark_trip_as_featured(trip):
    """将某个旅程添加到推荐栏目
    """
    if trip.source == 11:
        do_some_thing(trip)
    elif trip.source == 12:
        do_some_other_thing(trip)
    ... ...
    return

这个函数做了什么事?你努力想搞懂它的意思,不过 trip.source == 11 是什么情况?那 == 12 呢?这两行代码很简单,没有用到任何魔法特性。但初次接触代码的你可能需要花费 一整个下午 ,才能弄懂它们的含义。

问题就出在那几个数字字面量上。最初写下这个函数的人,可能是在公司成立之初加入的那位元老程序员。而他对那几个数字的含义非常清楚。但如果你是刚接触这段代码的新人,就完全是另外一码事了。

使用 enum 枚举类型改善代码

那么,怎么改善这段代码?最直接的方式,就是为这两个条件分支添加注释。不过在这里,“添加注释”显然不是提升代码可读性的最佳办法 (其实在绝大多数其他情况下都不是) 。我们需要用有意义的名称来代替这些字面量,而 枚举类型(enum) 用在这里最合适不过了。

enum 是 Python 自 3.4 版本引入的内置模块,如果你使用的是更早的版本,可以通过 pip install enum34 来安装它。下面是使用 enum 的样例代码:

# -*- coding: utf-8 -*-
from enum import IntEnum

class TripSource(IntEum):
    FROM_WEBSITE = 11
    FROM_IOS_CLIENT = 12


def mark_trip_as_featured(trip):
    if trip.source == TripSource.FROM_WEBSITE:
        do_some_thing(trip)
    elif trip.source == TripSource.FROM_IOS_CLIENT:
        do_some_other_thing(trip)
    ... ...
    return

将重复出现的数字字面量定义成枚举类型,不光可以改善代码的可读性,代码出现 Bug 的几率也会降低。

试想一下,如果你在某个分支判断时将 11 错打成了 111 会怎么样?我们时常会犯这种错,而这类错误在早期特别难被发现。将这些数字字面量全部放入枚举类型中可以比较好的规避这类问题。类似的,将字符串字面量改写成枚举也可以获得同样的好处。

使用枚举类型代替字面量的好处:

  • 提升代码可读性 :所有人都不需要记忆某个神奇的数字代表什么
  • 提升代码正确性 :减少打错数字或字母产生 bug 的可能性

当然,你完全没有必要把代码里的所有字面量都改成枚举类型。 记住,代码里出现的字面量,只要在它所处的上下文里面容易理解,就可以使用它。 比如那些经常作为数字下标出现的 0-1 就完全没有问题,因为所有人都知道它们的意思。

2. 别在裸字符串处理上走太远

什么是“裸字符串处理”?在这篇文章里,它指 只使用基本的加减乘除和循环、配合内置函数/方法来操作字符串,获得我们需要的结果。

所有人都写过这样的代码。有时候我们需要拼接一大段发给用户的告警信息,有时我们需要构造一大段发送给数据库的 SQL 查询语句,就像下面这样:

def fetch_users(conn, min_level=None, gender=None, has_membership=False, sort_field="created"):
    """获取用户列表

    :param int min_level: 要求的最低用户级别,默认为所有级别
    :param int gender: 筛选用户性别,默认为所有性别
    :param int has_membership: 筛选所有会员/非会员用户,默认非会员
    :param str sort_field: 排序字段,默认为按 created "用户创建日期"
    :returns: 列表:[(User ID, User Name), ...]
    """
    # 一种古老的 SQL 拼接技巧,使用 "WHERE 1=1" 来简化字符串拼接操作
    # 区分查询 params 来避免 SQL 注入问题
    statement = "SELECT id, name FROM users WHERE 1=1"
    params = []
    if min_level is not None:
        statement += " AND level >= ?"
        params.append(min_level)
    if gender is not None:
        statement += " AND gender >= ?"
        params.append(gender)
    if has_membership:
        statement += " AND has_membership == true"
    else:
        statement += " AND has_membership == false"

    statement += " ORDER BY ?"
    params.append(sort_field)
    return list(conn.execute(statement, params))

我们之所以用这种方式拼接出需要的字符串 - 在这里是 SQL 语句 - 是因为这样做简单、直接,符合直觉。但是这样做最大的问题在于: 随着函数逻辑变得更复杂,这段拼接代码会变得容易出错、难以扩展。 事实上,上面这段 Demo 代码也只是仅仅做到 看上去 没有明显的 bug 而已 (谁知道有没有其他隐藏问题)

其实,对于 SQL 语句这种结构化、有规则的字符串,用对象化的方式构建和编辑它才是更好的做法。下面这段代码用 SQLAlchemy 模块完成了同样的功能:

def fetch_users_v2(conn, min_level=None, gender=None, has_membership=False, sort_field="created"):
    """获取用户列表
    """
    query = select([users.c.id, users.c.name])
    if min_level != None:
        query = query.where(users.c.level >= min_level)
    if gender != None:
        query = query.where(users.c.gender == gender)
    query = query.where(users.c.has_membership == has_membership).order_by(users.c[sort_field])
    return list(conn.execute(query))

上面的 fetch_users_v2 函数更短也更好维护,而且根本不需要担心 SQL 注入问题。所以,当你的代码中出现复杂的裸字符串处理逻辑时,请试着用下面的方式替代它:

Q: 目标/源字符串是结构化的,遵循某种格式吗?

  • 是:找找是否已经有开源的对象化模块操作它们,或是自己写一个
    • SQL:SQLAlchemy
    • XML:lxml
    • JSON、YAML ...
  • 否:尝试使用模板引擎而不是复杂字符串处理逻辑来达到目的
    • Jinja2
    • Mako
    • Mustache

3. 不必预计算字面量表达式

我们的代码里偶尔会出现一些比较复杂的数字,就像下面这样:

def f1(delta_seconds):
    # 如果时间已经过去了超过 11 天,不做任何事
    if delta_seconds > 950400:
        return 
    ...

话说在前头,上面的代码没有任何毛病。

首先,我们在小本子(当然,和我一样的聪明人会用 IPython)上算了算: 11天一共包含多少秒? 。然后再把结果 950400 这个神奇的数字填进我们的代码里,最后心满意足的在上面补上一行注释:告诉所有人这个神奇的数字是怎么来的。

我想问的是: “为什么我们不直接把代码写成 if delta_seconds < 11 * 24 * 3600: 呢?”

“性能”,答案一定会是“性能”。我们都知道 Python 是一门~~(速度欠佳的)~~解释型语言,所以预先计算出 950400 正是因为我们不想让每次对函数 f1 的调用都带上这部分的计算开销。不过事实是: 即使我们把代码改成 if delta_seconds < 11 * 24 * 3600: ,函数也不会多出任何额外的开销。

Python 代码在执行时会被解释器编译成字节码,而真相就藏在字节码里。让我们用 dis 模块看看:

def f1(delta_seconds):
    if delta_seconds < 11 * 24 * 3600:
        return

import dis
dis.dis(f1)

# dis 执行结果
  5           0 LOAD_FAST                0 (delta_seconds)
              2 LOAD_CONST               1 (950400)
              4 COMPARE_OP               0 (<)
              6 POP_JUMP_IF_FALSE       12

  6           8 LOAD_CONST               0 (None)
             10 RETURN_VALUE
        >>   12 LOAD_CONST               0 (None)
             14 RETURN_VALUE

看见上面的 2 LOAD_CONST 1 (950400) 了吗?这表示 Python 解释器在将源码编译成成字节码时,会计算 11 * 24 * 3600 这段整型字面量,并用 950400 替换它。

所以,当我们的代码中需要出现复杂计算的字面量时,请保留整个算式吧。它对性能没有任何影响,而且会增加代码的可读性。

Hint:Python 解释器除了会预计算数值字面量表达式以外,还会对字符串、列表做类似的操作。一切都是为了性能。谁让你们老吐槽 Python 慢呢?

实用技巧

1. 布尔值其实也是“数字”

Python 里的两个布尔值 TrueFalse 在绝大多数情况下都可以直接等价于 10 两个整数来使用,就像这样:

>>> True + 1
2
>>> 1 / False
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

那么记住这点有什么用呢?首先,它们可以配合 sum 函数在需要计算总数时简化操作:

>>> l = [1, 2, 4, 5, 7]
>>> sum(i % 2 == 0 for i in l)
2

此外,如果将某个布尔值表达式作为列表的下标使用,可以实现类似三元表达式的目的:

# 类似的三元表达式:"Javascript" if 2 > 1 else "Python"
>>> ["Python", "Javascript"][2 > 1]
'Javascript'

2. 改善超长字符串的可读性

单行代码的长度不宜太长。比如 PEP8 里就建议每行字符数不得超过 79 。现实世界里,大部分人遵循的单行最大字符数在 79 到 119 之间。如果只是代码,这样的要求是比较容易达到的,但假设代码里需要出现一段超长的字符串呢?

这时,除了使用斜杠 \ 和加号 + 将长字符串拆分为好几段以外,还有一种更简单的办法: 使用括号将长字符串包起来,然后就可以随意折行了

def main():
    logger.info(("There is something really bad happened during the process. "
                 "Please contact your administrator."))

当多级缩进里出现多行字符串时

日常编码时,还有一种比较麻烦的情况。就是需要在已经有缩进层级的代码里,插入多行字符串字面量。因为多行字符串不能包含当前的缩进空格,所以,我们需要把代码写成这样:

def main():
    if user.is_active:
        message = """Welcome, today's movie list:
- Jaw (1975)
- The Shining (1980)
- Saw (2004)"""

但是这样写会破坏整段代码的缩进视觉效果,显得非常突兀。要改善它有很多种办法。比如我们可以把这段多行字符串作为变量提取到模块的最外层。不过,如果你的代码逻辑里用字面量更合适的话,你可以利用标准库 textwrap 来解决这个问题:

from textwrap import dedent

def main():
    if user.is_active:
        # dedent 将会缩进掉整段文字最左边的空字符串
        message = dedent("""\
            Welcome, today's movie list:
            - Jaw (1975)
            - The Shining (1980)
            - Saw (2004)""")

3. 别忘了那些 “r” 开头的内建字符串函数

Python 的字符串有着非常多实用的内建方法,最常用的有 .strip().split() 等。这些内建方法里的大多数,处理起来的顺序都是从左往右。但是其中也包含了部分以 r 打头的 从右至左处理 的镜像方法。在处理特定逻辑时,使用它们可以让你事半功倍。

假设我们需要解析一些访问日志,日志格式为:"{user_agent}" {content_length}:

>>> log_line = '"AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36" 47632'

如果使用 .split() 将日志拆分为 (user_agent, content_length) ,我们需要这么写:

>>> l = log_line.split()
>>> " ".join(l[:-1]), l[-1]
('"AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36"', '47632')

但是如果使用 .rsplit() 的话,处理逻辑就更直接了:

>>> log_line.rsplit(None, 1)
['"AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36"', '47632']

4. 使用“无穷大” float("inf")

如果有人问你: “Python 里什么数字最大/最小?” 。你应该怎么回答?有这样的东西存在吗?

答案是:“有的,它们就是: float("inf")float("-inf") ”。它们俩分别对应着数学世界里的真负无穷大。当它们和任意数值进行比较时,满足这样的规律: float("-inf") < 任意数值 < float("inf")

因为它们有着这样的特点,我们可以在某些场景用上它们:

# A. 根据年龄升序排序,没有提供年龄放在最后边
>>> users = {"tom": 19, "jenny": 13, "jack": None, "andrew": 43}
>>> sorted(users.keys(), key=lambda user: users.get(user) or float('inf'))
['jenny', 'tom', 'andrew', 'jack']

# B. 作为循环初始值,简化第一次判断逻辑
>>> max_num = float('-inf')
>>> # 找到列表中最大的数字
>>> for i in [23, 71, 3, 21, 8]:
...:    if i > max_num:
...:         max_num = i
...:
>>> max_num
71

常见误区

1. “value += 1” 并非线程安全

当我们编写多线程程序时,经常需要处理复杂的共享变量和竞态等问题。

“线程安全”,通常被用来形容 某个行为或者某类数据结构,可以在多线程环境下被共享使用并产生预期内的结果。 一个典型的满足“线程安全”的模块就是 queue 队列模块

而我们常做的 value += 1 操作,很容易被想当然的认为是“线程安全”的。因为它看上去就是一个原子操作 (指一个最小的操作单位,执行途中不会插入任何其他操作) 。但真相并非如此,虽然从 Python 代码上来看, value += 1 这个操作像是原子的。但它最终被 Python 解释器执行的时候,早就不再 “原子” 了。

我们可以用前面提到的 dis 模块来验证一下:

def incr(value):
    value += 1


# 使用 dis 模块查看字节码
import dis

dis.dis(incr)
      0 LOAD_FAST                0 (value)
      2 LOAD_CONST               1 (1)
      4 INPLACE_ADD
      6 STORE_FAST               0 (value)
      8 LOAD_CONST               0 (None)
     10 RETURN_VALUE

在上面的 dis 函数输出结果中,我们可以看到这个简单的累加语句,会被编译成包括取值和保存在内好几个不同步骤,而在多线程环境下,任意一个其他线程都有可能在其中某个步骤切入进来,阻碍你获得正确的结果。

因此,请不要凭借自己的直觉来判断某个行为是否“线程安全”,不然当程序在高并发环境下出现奇怪的 bug 时,你将为自己的直觉付出惨痛的代价。

2. 字符串拼接并不慢

在我刚接触 Python 不久时,在某个网站看到这样一个说法: “Python 里的字符串是不可变的,所以每一次对字符串进行拼接都会生成一个新对象。导致新的内存分配,效率非常低”。 我对此深信不疑。

所以,一直以来,我尽量都在避免使用 += 的方式去拼接字符串,而是用 "".join(str_list) 之类的方式来替代。

但是,在某个偶然的机会下,我对 Python 的字符串拼接做了一次简单的性能测试后发现: Python 的字符串拼接根本就不慢! 在查阅了很多资料后,最终发现真相:

"Python 的字符串拼接在 2.2 以及之前的版本确实很慢。但是因为这个操作太常用了,所以之后的版本里专门针对这类操作做了性能优化。大大提升了执行效率。"

如今使用 += 的方式来拼接字符串,效率已经非常接近 "".join(str_list) 了。所以,该拼接时就拼接吧,不必担心任何性能问题。

Hint: 如果你想了解更详细的相关内容,可以读一下这篇文章: Python - Efficient String Concatenation in Python (2016 edition) - smcl

结语

以上就是『Python 工匠』系列文章的第三篇。内容比较零碎,难度相对来说也更低一些,更适合接触 Python 编程不久的新朋友们阅读。

让我们最后再总结一下要点:

  • 编写代码时,请考虑阅读者的感受,不要出现太多神奇的数字字面量
  • 当操作结构化字符串时,使用对象化模块比直接处理更有优势
  • dis 模块非常有用,请多多使用它验证你的猜测
  • 多线程环境下的编码非常复杂,要足够谨慎,不要相信自己的直觉
  • Python 语言的更新非常快,不要被别人的经验所左右

分享给小伙伴们:
本文标签: Python字符串

相关文章

发表评论愿您的每句评论,都能给大家的生活添色彩,带来共鸣,带来思索,带来快乐。

CopyRight © 2015-2016 QingPingShan.com , All Rights Reserved.

清屏网 版权所有 豫ICP备15026204号