内容字号:默认大号超大号

段落设置:段首缩进取消段首缩进

字体设置:切换到微软雅黑切换到宋体

python计算机视觉深度学习1:简介

2018-07-11 18:29 出处:清屏网 人气: 评论(0

神经网络和深度学习简史

人工神经网络(ANN Artificial Neural Network)是一类学习的机器学习算法,它专注于模式识别,对数据进行学习,灵感来自大脑的结构和功能深度学习属于ANN算法的家族,在大多数情况下,两者可以互换使用。

事实上,你可能会惊讶地发现深度学习领域已经存在了60多年。自20世纪40年代以来,“深度学习”一直存在着各种各样的名字

变化,包括控制论,连接主义和最熟悉的人工神经网络。

image.png

第一个神经网络模型来自McCulloch和Pitts,1943年[11]。这个网络是一个二元分类器,能够根据一些输入识别两个不同的类别。

然后,在20世纪50年代,开创性的Perceptron算法由Rosenblatt发表 - 这个模型可以自动学习输入分类所需的权重(无人为干预需要)。这个自动训练程序构成了随机梯度下降(SGD Stochastic Gradient Descent)的基础,今天仍用于训练非常深的神经网络。

image.png

在此期间,基于感知器的技术在神经网络社区中风靡一时。然而,Minsky和Papert 在1969年出版的一本书有效地停滞了神经

网络研究近十年。他们的工作证明了具有线性的感知器激活函数(深度无关)只是线性分类器,无法解决非线性问题问题。

image.png

上图中无法用直线分隔蓝色星星与红色圆圈。此外,作者认为(当时)我们没有计算资源来构建大型深度神经网络(事后看来,它们绝对正确)。

反向传播算法和Werbos(1974),Rumelhart(1986)和LeCun(1998)的研究[17]唤醒了神经网络。他们在反向传播算法中的研究启用了多层要训​​练的前馈神经网络。

image.png

结合非线性激活函数,研究人员现在可以学习非线性函数并解决XOR问题,为神经网络研究的全新领域打开了大门。

进一步的研究表明神经网络是通用的近似,能够近似任何连续函数(但不保证网络是否正常可以学习表示函数所需的参数)。

反向传播算法是现代神经网络的基石.有效地训练神经网络并“教导”他们从错误中吸取教训。但即便如此,在由于(1)计算机速度慢(与现代机器相比)和(2)缺少大量标记的训练集,研究人员无法(可靠地)训练超过两个隐藏的层的神经网络,因为计算上是不可行的。

今天最新神经网络为深度学习,我们拥有更快,更专业的硬件,提供更多可用的训练数据。我们现在可以训练具有更多隐藏层的网络,能够进行分级学习,在较低层和更多层次中学习简单的概念,在较高层中的抽象模式。

应用深度学习到特征学习的典型例子是应用于手写字符识别的Convo-lutional神经网络(LeCun 1988)。通过顺序堆叠自动从图像中学习区分模式(称为“过滤器”)。网络较低级别的过滤器代表边缘和角落,而更高级别的图层使用边缘和角落来学习更有用的抽象概念以区分图像类。

在许多领域中,CNN现在被认为是最强大的图像分类器,是目前负责推动计算机视觉子领域的最先进技术。

分享给小伙伴们:
本文标签: python计算机视觉深度学习

相关文章

发表评论愿您的每句评论,都能给大家的生活添色彩,带来共鸣,带来思索,带来快乐。

CopyRight © 2015-2016 QingPingShan.com , All Rights Reserved.

清屏网 版权所有 豫ICP备15026204号