内容字号:默认大号超大号

段落设置:段首缩进取消段首缩进

字体设置:切换到微软雅黑切换到宋体

NumPy Tips

2018-04-16 16:34 出处:清屏网 人气: 评论(0

在机器学习领域中,NumPy是最基本的数据结构,用于存储矩阵和执行与矩阵计算相关的操作。本文主要分享关于NumPy的一些使用小技巧,尽量通过矩阵计算避免循环。

NumPy

概率矩阵 转 OneHot矩阵

在多分类过程中,经常需要将 概率矩阵 转换为 One-Hot矩阵 ,用于验证模型效果。

  1. 计算概率矩阵中每一行的最大值位置;
  2. 创建与类别维度相同的对角线矩阵;
  3. 根据最大位置, 选择对角线矩阵相应的行, 即One-Hot矩阵。

源码实现:

def prp_2_oh_array(arr):
    """
    概率矩阵转换为OH矩阵
    arr = np.array([[0.1, 0.5, 0.4], [0.2, 0.1, 0.6]])
    :param arr: 概率矩阵
    :return: OH矩阵
    """
    arr_size = arr.shape[1]  # 类别数
    arr_max = np.argmax(arr, axis=1)  # 最大值位置
    oh_arr = np.eye(arr_size)[arr_max]  # OH矩阵
    return oh_arr

输出:

[[0. 1. 0.]
 [0. 0. 1.]]

列表的置信区间

当桶编码数字列表时,需要使用 置信区间 进行处理异常值,和桶区间的划分。

import numpy as np
from scipy import stats

def mean_confidence_interval(data_list, confidence=0.95):
    """
    置信区间
    data_list = [1, 2, 3, 4, 5, 6, 10]
    (4.428571428571429, 1.6613839667258272, 7.19575889041703)
    :param data_list: 数字列表
    :param confidence: 置信度
    :return: 均值和置信区间
    """
    a = 1.0 * np.array(data_list)
    n = len(a)
    m, se = np.mean(a), stats.sem(a)
    h = se * stats.t.ppf((1 + confidence) / 2., n - 1)
    return m, m - h, m + h

桶区间索引列表

使用 digitize() 函数,将不同的数字放入桶中,即将连续列表离散化。注意:桶数是区间数的长度加1,左右两侧均有,从0开始。

import numpy as np

x = np.array([0.1, 6.4, 3.0, 1.6, 25, 30])
bins = np.array([1.0, 2.5, 4.0, 10.0])  # 区间包含首位,即len+1
inds = np.digitize(x, bins)  # 转换为桶的值
print inds

输出:

[0 3 2 1 4 4]

异常值检测

将数据中的异常值(Outlier)替换为最大值和最小值,避免对于分布的形态造成干扰。

def filter_outliers(data, m=1):
    """
    异常值检测
    data = np.array([-100, 0.1, 6.4, 3.0, 1.6, 25, 30, 100])
    [ 0.1  0.1  6.4  3.   1.6 25.  30.  30. ]
    :param data: 数据列表
    :param m: 偏离标准差的数量
    :return: 去除标准差的数据
    """
    std_arr = data[abs(data - np.mean(data)) < m * np.std(data)]
    max_ol = data - np.mean(data) > m * np.std(data)
    min_ol = data - np.mean(data) < -m * np.std(data)
    data[max_ol] = np.max(std_arr)
    data[min_ol] = np.min(std_arr)
    return data

连续列表离散化

将连续列表离散化,去除异常值,基于置信度进行分区。其中,函数 filter_outliersmean_confidence_interval 参考上文实现。

def continuous_list_to_discrete(cont_list, bc=32, confidence=0.95):
    """
    连续数据离散化,含有去除异常值
    x = np.array([-100, 0.1, 6.4, 3.0, 1.6, 25, 30, 100])
    [ 0  0  8  4  2 31 31 31]
    :param cont_list: 连续列表
    :param bc: 桶数量
    :param confidence: 置信度
    :return: 离散列表
    """
    cont_list = filter_outliers(cont_list)  # 去除异常值
    m, h = mean_confidence_interval(cont_list, confidence)
    bins = np.linspace(m - h, m + h, bc - 1)  # 桶数量减1为区间数
    dis_list = np.digitize(cont_list, bins)  # 转换为桶的值
    return dis_list

OK, that's all!

分享给小伙伴们:
本文标签: NumPy

相关文章

发表评论愿您的每句评论,都能给大家的生活添色彩,带来共鸣,带来思索,带来快乐。

CopyRight © 2015-2016 QingPingShan.com , All Rights Reserved.

清屏网 版权所有 豫ICP备15026204号